8.6.0.2. BLAS: Single Precision Functions
(packages/blas/blas-s.lsh)

Author(s): Fu Jie Huang, Yann LeCun

This provides a complete interface to the FORTRAN BLAS library of low-level linear algebra functions.

8.6.0.2.0. (sasum n sx incx )
(packages/blas/blas-s.lsh)


*  =====================================================================
*
*     takes the sum of the absolute values.
*     uses unrolled loops for increment equal to one.
*     jack dongarra, linpack, 3/11/78.
*     modified 3/93 to return if incx .le. 0.
*     modified 12/3/93, array(1) declarations changed to array(*)
*
*  =====================================================================


8.6.0.2.1. (saxpy n sa sx incx sy incy )
(packages/blas/blas-s.lsh)


*  =====================================================================
*
*     constant times a vector plus a vector.
*     uses unrolled loop for increments equal to one.
*     jack dongarra, linpack, 3/11/78.
*     modified 12/3/93, array(1) declarations changed to array(*)
*
*  =====================================================================


8.6.0.2.2. (scasum n cx incx )
(packages/blas/blas-s.lsh)


*  =====================================================================
*
*     takes the sum of the absolute values of a complex vector and
*     returns a single precision result.
*     jack dongarra, linpack, 3/11/78.
*     modified 3/93 to return if incx .le. 0.
*     modified 12/3/93, array(1) declarations changed to array(*)
*
*  =====================================================================


8.6.0.2.3. (scnrm2 n x incx )
(packages/blas/blas-s.lsh)


*  =====================================================================
*  Purpose
*  =======
*
*  SCNRM2 returns the euclidean norm of a vector via the function
*  name, so that
*
*     SCNRM2 := sqrt( conjg( x' )*x )
*
*
*
*  -- This version written on 25-October-1982.
*     Modified on 14-October-1993 to inline the call to CLASSQ.
*     Sven Hammarling, Nag Ltd.
*
*
*     .. Parameters ..
*  =====================================================================


8.6.0.2.4. (scopy n sx incx sy incy )
(packages/blas/blas-s.lsh)


*  =====================================================================
*
*     copies a vector, x, to a vector, y.
*     uses unrolled loops for increments equal to 1.
*     jack dongarra, linpack, 3/11/78.
*     modified 12/3/93, array(1) declarations changed to array(*)
*
*  =====================================================================


8.6.0.2.5. (sdot n sx incx sy incy )
(packages/blas/blas-s.lsh)


*  =====================================================================
*
*     forms the dot product of two vectors.
*     uses unrolled loops for increments equal to one.
*     jack dongarra, linpack, 3/11/78.
*     modified 12/3/93, array(1) declarations changed to array(*)
*
*  =====================================================================


8.6.0.2.6. (sgbmv trans m n kl ku alpha a lda x incx beta y incy )
(packages/blas/blas-s.lsh)


*  =====================================================================
*  Purpose
*  =======
*
*  SGBMV  performs one of the matrix-vector operations
*
*     y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,
*
*  where alpha and beta are scalars, x and y are vectors and A is an
*  m by n band matrix, with kl sub-diagonals and ku super-diagonals.
*
*  Parameters
*  ==========
*
*  TRANS  - CHARACTER*1.
*           On entry, TRANS specifies the operation to be performed as
*           follows:
*
*              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
*
*              TRANS = 'T' or 't'   y := alpha*A'*x + beta*y.
*
*              TRANS = 'C' or 'c'   y := alpha*A'*x + beta*y.
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry, M specifies the number of rows of the matrix A.
*           M must be at least zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the number of columns of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  KL     - INTEGER.
*           On entry, KL specifies the number of sub-diagonals of the
*           matrix A. KL must satisfy  0 .le. KL.
*           Unchanged on exit.
*
*  KU     - INTEGER.
*           On entry, KU specifies the number of super-diagonals of the
*           matrix A. KU must satisfy  0 .le. KU.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, n ).
*           Before entry, the leading ( kl + ku + 1 ) by n part of the
*           array A must contain the matrix of coefficients, supplied
*           column by column, with the leading diagonal of the matrix in
*           row ( ku + 1 ) of the array, the first super-diagonal
*           starting at position 2 in row ku, the first sub-diagonal
*           starting at position 1 in row ( ku + 2 ), and so on.
*           Elements in the array A that do not correspond to elements
*           in the band matrix (such as the top left ku by ku triangle)
*           are not referenced.
*           The following program segment will transfer a band matrix
*           from conventional full matrix storage to band storage:
*
*                 DO 20, J = 1, N
*                    K = KU + 1 - J
*                    DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
*                       A( K + I, J ) = matrix( I, J )
*              10    CONTINUE
*              20 CONTINUE
*
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. LDA must be at least
*           ( kl + ku + 1 ).
*           Unchanged on exit.
*
*  X      - REAL             array of DIMENSION at least
*           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
*           and at least
*           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
*           Before entry, the incremented array X must contain the
*           vector x.
*           Unchanged on exit.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*  BETA   - REAL            .
*           On entry, BETA specifies the scalar beta. When BETA is
*           supplied as zero then Y need not be set on input.
*           Unchanged on exit.
*
*  Y      - REAL             array of DIMENSION at least
*           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
*           and at least
*           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
*           Before entry, the incremented array Y must contain the
*           vector y. On exit, Y is overwritten by the updated vector y.
*
*  INCY   - INTEGER.
*           On entry, INCY specifies the increment for the elements of
*           Y. INCY must not be zero.
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*     .. Parameters ..
*  =====================================================================


8.6.0.2.7. (sgemm transa transb m n k alpha a lda b ldb beta c ldc )
(packages/blas/blas-s.lsh)


*  =====================================================================
*  Purpose
*  =======
*
*  SGEMM  performs one of the matrix-matrix operations
*
*     C := alpha*op( A )*op( B ) + beta*C,
*
*  where  op( X ) is one of
*
*     op( X ) = X   or   op( X ) = X',
*
*  alpha and beta are scalars, and A, B and C are matrices, with op( A )
*  an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix.
*
*  Parameters
*  ==========
*
*  TRANSA - CHARACTER*1.
*           On entry, TRANSA specifies the form of op( A ) to be used in
*           the matrix multiplication as follows:
*
*              TRANSA = 'N' or 'n',  op( A ) = A.
*
*              TRANSA = 'T' or 't',  op( A ) = A'.
*
*              TRANSA = 'C' or 'c',  op( A ) = A'.
*
*           Unchanged on exit.
*
*  TRANSB - CHARACTER*1.
*           On entry, TRANSB specifies the form of op( B ) to be used in
*           the matrix multiplication as follows:
*
*              TRANSB = 'N' or 'n',  op( B ) = B.
*
*              TRANSB = 'T' or 't',  op( B ) = B'.
*
*              TRANSB = 'C' or 'c',  op( B ) = B'.
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry,  M  specifies  the number  of rows  of the  matrix
*           op( A )  and of the  matrix  C.  M  must  be at least  zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry,  N  specifies the number  of columns of the matrix
*           op( B ) and the number of columns of the matrix C. N must be
*           at least zero.
*           Unchanged on exit.
*
*  K      - INTEGER.
*           On entry,  K  specifies  the number of columns of the matrix
*           op( A ) and the number of rows of the matrix op( B ). K must
*           be at least  zero.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, ka ), where ka is
*           k  when  TRANSA = 'N' or 'n',  and is  m  otherwise.
*           Before entry with  TRANSA = 'N' or 'n',  the leading  m by k
*           part of the array  A  must contain the matrix  A,  otherwise
*           the leading  k by m  part of the array  A  must contain  the
*           matrix A.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. When  TRANSA = 'N' or 'n' then
*           LDA must be at least  max( 1, m ), otherwise  LDA must be at
*           least  max( 1, k ).
*           Unchanged on exit.
*
*  B      - REAL             array of DIMENSION ( LDB, kb ), where kb is
*           n  when  TRANSB = 'N' or 'n',  and is  k  otherwise.
*           Before entry with  TRANSB = 'N' or 'n',  the leading  k by n
*           part of the array  B  must contain the matrix  B,  otherwise
*           the leading  n by k  part of the array  B  must contain  the
*           matrix B.
*           Unchanged on exit.
*
*  LDB    - INTEGER.
*           On entry, LDB specifies the first dimension of B as declared
*           in the calling (sub) program. When  TRANSB = 'N' or 'n' then
*           LDB must be at least  max( 1, k ), otherwise  LDB must be at
*           least  max( 1, n ).
*           Unchanged on exit.
*
*  BETA   - REAL            .
*           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
*           supplied as zero then C need not be set on input.
*           Unchanged on exit.
*
*  C      - REAL             array of DIMENSION ( LDC, n ).
*           Before entry, the leading  m by n  part of the array  C must
*           contain the matrix  C,  except when  beta  is zero, in which
*           case C need not be set on entry.
*           On exit, the array  C  is overwritten by the  m by n  matrix
*           ( alpha*op( A )*op( B ) + beta*C ).
*
*  LDC    - INTEGER.
*           On entry, LDC specifies the first dimension of C as declared
*           in  the  calling  (sub)  program.   LDC  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*
*  Level 3 Blas routine.
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
*     .. External Functions ..
*  =====================================================================


8.6.0.2.8. (sgemv trans m n alpha a lda x incx beta y incy )
(packages/blas/blas-s.lsh)


*  =====================================================================
*  Purpose
*  =======
*
*  SGEMV  performs one of the matrix-vector operations
*
*     y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,
*
*  where alpha and beta are scalars, x and y are vectors and A is an
*  m by n matrix.
*
*  Parameters
*  ==========
*
*  TRANS  - CHARACTER*1.
*           On entry, TRANS specifies the operation to be performed as
*           follows:
*
*              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
*
*              TRANS = 'T' or 't'   y := alpha*A'*x + beta*y.
*
*              TRANS = 'C' or 'c'   y := alpha*A'*x + beta*y.
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry, M specifies the number of rows of the matrix A.
*           M must be at least zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the number of columns of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, n ).
*           Before entry, the leading m by n part of the array A must
*           contain the matrix of coefficients.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. LDA must be at least
*           max( 1, m ).
*           Unchanged on exit.
*
*  X      - REAL             array of DIMENSION at least
*           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
*           and at least
*           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
*           Before entry, the incremented array X must contain the
*           vector x.
*           Unchanged on exit.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*  BETA   - REAL            .
*           On entry, BETA specifies the scalar beta. When BETA is
*           supplied as zero then Y need not be set on input.
*           Unchanged on exit.
*
*  Y      - REAL             array of DIMENSION at least
*           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
*           and at least
*           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
*           Before entry with BETA non-zero, the incremented array Y
*           must contain the vector y. On exit, Y is overwritten by the
*           updated vector y.
*
*  INCY   - INTEGER.
*           On entry, INCY specifies the increment for the elements of
*           Y. INCY must not be zero.
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
*  =====================================================================


8.6.0.2.9. (sger m n alpha x incx y incy a lda )
(packages/blas/blas-s.lsh)


*  =====================================================================
*  Purpose
*  =======
*
*  SGER   performs the rank 1 operation
*
*     A := alpha*x*y' + A,
*
*  where alpha is a scalar, x is an m element vector, y is an n element
*  vector and A is an m by n matrix.
*
*  Parameters
*  ==========
*
*  M      - INTEGER.
*           On entry, M specifies the number of rows of the matrix A.
*           M must be at least zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the number of columns of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  X      - REAL             array of dimension at least
*           ( 1 + ( m - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the m
*           element vector x.
*           Unchanged on exit.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*  Y      - REAL             array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCY ) ).
*           Before entry, the incremented array Y must contain the n
*           element vector y.
*           Unchanged on exit.
*
*  INCY   - INTEGER.
*           On entry, INCY specifies the increment for the elements of
*           Y. INCY must not be zero.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, n ).
*           Before entry, the leading m by n part of the array A must
*           contain the matrix of coefficients. On exit, A is
*           overwritten by the updated matrix.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. LDA must be at least
*           max( 1, m ).
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
*  =====================================================================


8.6.0.2.10. (snrm2 n x incx )
(packages/blas/blas-s.lsh)


*  =====================================================================
*  Purpose
*  =======
*
*  SNRM2 returns the euclidean norm of a vector via the function
*  name, so that
*
*     SNRM2 := sqrt( x'*x )
*
*
*
*  -- This version written on 25-October-1982.
*     Modified on 14-October-1993 to inline the call to SLASSQ.
*     Sven Hammarling, Nag Ltd.
*
*
*     .. Parameters ..
*  =====================================================================


8.6.0.2.11. (srotg sa sb c s )
(packages/blas/blas-s.lsh)


*  =====================================================================
*
*     construct givens plane rotation.
*     jack dongarra, linpack, 3/11/78.
*
*  =====================================================================


8.6.0.2.12. (srot n sx incx sy incy c s )
(packages/blas/blas-s.lsh)


*  =====================================================================
*
*     applies a plane rotation.
*     jack dongarra, linpack, 3/11/78.
*     modified 12/3/93, array(1) declarations changed to array(*)
*
*  =====================================================================


8.6.0.2.13. (ssbmv uplo n k alpha a lda x incx beta y incy )
(packages/blas/blas-s.lsh)


*  =====================================================================
*  Purpose
*  =======
*
*  SSBMV  performs the matrix-vector  operation
*
*     y := alpha*A*x + beta*y,
*
*  where alpha and beta are scalars, x and y are n element vectors and
*  A is an n by n symmetric band matrix, with k super-diagonals.
*
*  Parameters
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the upper or lower
*           triangular part of the band matrix A is being supplied as
*           follows:
*
*              UPLO = 'U' or 'u'   The upper triangular part of A is
*                                  being supplied.
*
*              UPLO = 'L' or 'l'   The lower triangular part of A is
*                                  being supplied.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the order of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  K      - INTEGER.
*           On entry, K specifies the number of super-diagonals of the
*           matrix A. K must satisfy  0 .le. K.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, n ).
*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
*           by n part of the array A must contain the upper triangular
*           band part of the symmetric matrix, supplied column by
*           column, with the leading diagonal of the matrix in row
*           ( k + 1 ) of the array, the first super-diagonal starting at
*           position 2 in row k, and so on. The top left k by k triangle
*           of the array A is not referenced.
*           The following program segment will transfer the upper
*           triangular part of a symmetric band matrix from conventional
*           full matrix storage to band storage:
*
*                 DO 20, J = 1, N
*                    M = K + 1 - J
*                    DO 10, I = MAX( 1, J - K ), J
*                       A( M + I, J ) = matrix( I, J )
*              10    CONTINUE
*              20 CONTINUE
*
*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
*           by n part of the array A must contain the lower triangular
*           band part of the symmetric matrix, supplied column by
*           column, with the leading diagonal of the matrix in row 1 of
*           the array, the first sub-diagonal starting at position 1 in
*           row 2, and so on. The bottom right k by k triangle of the
*           array A is not referenced.
*           The following program segment will transfer the lower
*           triangular part of a symmetric band matrix from conventional
*           full matrix storage to band storage:
*
*                 DO 20, J = 1, N
*                    M = 1 - J
*                    DO 10, I = J, MIN( N, J + K )
*                       A( M + I, J ) = matrix( I, J )
*              10    CONTINUE
*              20 CONTINUE
*
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. LDA must be at least
*           ( k + 1 ).
*           Unchanged on exit.
*
*  X      - REAL             array of DIMENSION at least
*           ( 1 + ( n - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the
*           vector x.
*           Unchanged on exit.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*  BETA   - REAL            .
*           On entry, BETA specifies the scalar beta.
*           Unchanged on exit.
*
*  Y      - REAL             array of DIMENSION at least
*           ( 1 + ( n - 1 )*abs( INCY ) ).
*           Before entry, the incremented array Y must contain the
*           vector y. On exit, Y is overwritten by the updated vector y.
*
*  INCY   - INTEGER.
*           On entry, INCY specifies the increment for the elements of
*           Y. INCY must not be zero.
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
*  =====================================================================


8.6.0.2.14. (sscal n sa sx incx )
(packages/blas/blas-s.lsh)


*  =====================================================================
*
*     scales a vector by a constant.
*     uses unrolled loops for increment equal to 1.
*     jack dongarra, linpack, 3/11/78.
*     modified 3/93 to return if incx .le. 0.
*     modified 12/3/93, array(1) declarations changed to array(*)
*
*  =====================================================================


8.6.0.2.15. (sspmv uplo n alpha ap x incx beta y incy )
(packages/blas/blas-s.lsh)


*  =====================================================================
*  Purpose
*  =======
*
*  SSPMV  performs the matrix-vector operation
*
*     y := alpha*A*x + beta*y,
*
*  where alpha and beta are scalars, x and y are n element vectors and
*  A is an n by n symmetric matrix, supplied in packed form.
*
*  Parameters
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the upper or lower
*           triangular part of the matrix A is supplied in the packed
*           array AP as follows:
*
*              UPLO = 'U' or 'u'   The upper triangular part of A is
*                                  supplied in AP.
*
*              UPLO = 'L' or 'l'   The lower triangular part of A is
*                                  supplied in AP.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the order of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  AP     - REAL             array of DIMENSION at least
*           ( ( n*( n + 1 ) )/2 ).
*           Before entry with UPLO = 'U' or 'u', the array AP must
*           contain the upper triangular part of the symmetric matrix
*           packed sequentially, column by column, so that AP( 1 )
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
*           and a( 2, 2 ) respectively, and so on.
*           Before entry with UPLO = 'L' or 'l', the array AP must
*           contain the lower triangular part of the symmetric matrix
*           packed sequentially, column by column, so that AP( 1 )
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
*           and a( 3, 1 ) respectively, and so on.
*           Unchanged on exit.
*
*  X      - REAL             array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the n
*           element vector x.
*           Unchanged on exit.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*  BETA   - REAL            .
*           On entry, BETA specifies the scalar beta. When BETA is
*           supplied as zero then Y need not be set on input.
*           Unchanged on exit.
*
*  Y      - REAL             array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCY ) ).
*           Before entry, the incremented array Y must contain the n
*           element vector y. On exit, Y is overwritten by the updated
*           vector y.
*
*  INCY   - INTEGER.
*           On entry, INCY specifies the increment for the elements of
*           Y. INCY must not be zero.
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
*  =====================================================================


8.6.0.2.16. (sspr2 uplo n alpha x incx y incy ap )
(packages/blas/blas-s.lsh)


*  =====================================================================
*  Purpose
*  =======
*
*  SSPR2  performs the symmetric rank 2 operation
*
*     A := alpha*x*y' + alpha*y*x' + A,
*
*  where alpha is a scalar, x and y are n element vectors and A is an
*  n by n symmetric matrix, supplied in packed form.
*
*  Parameters
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the upper or lower
*           triangular part of the matrix A is supplied in the packed
*           array AP as follows:
*
*              UPLO = 'U' or 'u'   The upper triangular part of A is
*                                  supplied in AP.
*
*              UPLO = 'L' or 'l'   The lower triangular part of A is
*                                  supplied in AP.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the order of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  X      - REAL             array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the n
*           element vector x.
*           Unchanged on exit.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*  Y      - REAL             array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCY ) ).
*           Before entry, the incremented array Y must contain the n
*           element vector y.
*           Unchanged on exit.
*
*  INCY   - INTEGER.
*           On entry, INCY specifies the increment for the elements of
*           Y. INCY must not be zero.
*           Unchanged on exit.
*
*  AP     - REAL             array of DIMENSION at least
*           ( ( n*( n + 1 ) )/2 ).
*           Before entry with  UPLO = 'U' or 'u', the array AP must
*           contain the upper triangular part of the symmetric matrix
*           packed sequentially, column by column, so that AP( 1 )
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
*           and a( 2, 2 ) respectively, and so on. On exit, the array
*           AP is overwritten by the upper triangular part of the
*           updated matrix.
*           Before entry with UPLO = 'L' or 'l', the array AP must
*           contain the lower triangular part of the symmetric matrix
*           packed sequentially, column by column, so that AP( 1 )
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
*           and a( 3, 1 ) respectively, and so on. On exit, the array
*           AP is overwritten by the lower triangular part of the
*           updated matrix.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
*  =====================================================================


8.6.0.2.17. (sspr uplo n alpha x incx ap )
(packages/blas/blas-s.lsh)


*  =====================================================================
*  Purpose
*  =======
*
*  SSPR    performs the symmetric rank 1 operation
*
*     A := alpha*x*x' + A,
*
*  where alpha is a real scalar, x is an n element vector and A is an
*  n by n symmetric matrix, supplied in packed form.
*
*  Parameters
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the upper or lower
*           triangular part of the matrix A is supplied in the packed
*           array AP as follows:
*
*              UPLO = 'U' or 'u'   The upper triangular part of A is
*                                  supplied in AP.
*
*              UPLO = 'L' or 'l'   The lower triangular part of A is
*                                  supplied in AP.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the order of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  X      - REAL             array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the n
*           element vector x.
*           Unchanged on exit.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*  AP     - REAL             array of DIMENSION at least
*           ( ( n*( n + 1 ) )/2 ).
*           Before entry with  UPLO = 'U' or 'u', the array AP must
*           contain the upper triangular part of the symmetric matrix
*           packed sequentially, column by column, so that AP( 1 )
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
*           and a( 2, 2 ) respectively, and so on. On exit, the array
*           AP is overwritten by the upper triangular part of the
*           updated matrix.
*           Before entry with UPLO = 'L' or 'l', the array AP must
*           contain the lower triangular part of the symmetric matrix
*           packed sequentially, column by column, so that AP( 1 )
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
*           and a( 3, 1 ) respectively, and so on. On exit, the array
*           AP is overwritten by the lower triangular part of the
*           updated matrix.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
*  =====================================================================


8.6.0.2.18. (sswap n sx incx sy incy )
(packages/blas/blas-s.lsh)


*  =====================================================================
*
*     interchanges two vectors.
*     uses unrolled loops for increments equal to 1.
*     jack dongarra, linpack, 3/11/78.
*     modified 12/3/93, array(1) declarations changed to array(*)
*
*  =====================================================================


8.6.0.2.19. (ssymm side uplo m n alpha a lda b ldb beta c ldc )
(packages/blas/blas-s.lsh)


*  =====================================================================
*  Purpose
*  =======
*
*  SSYMM  performs one of the matrix-matrix operations
*
*     C := alpha*A*B + beta*C,
*
*  or
*
*     C := alpha*B*A + beta*C,
*
*  where alpha and beta are scalars,  A is a symmetric matrix and  B and
*  C are  m by n matrices.
*
*  Parameters
*  ==========
*
*  SIDE   - CHARACTER*1.
*           On entry,  SIDE  specifies whether  the  symmetric matrix  A
*           appears on the  left or right  in the  operation as follows:
*
*              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C,
*
*              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C,
*
*           Unchanged on exit.
*
*  UPLO   - CHARACTER*1.
*           On  entry,   UPLO  specifies  whether  the  upper  or  lower
*           triangular  part  of  the  symmetric  matrix   A  is  to  be
*           referenced as follows:
*
*              UPLO = 'U' or 'u'   Only the upper triangular part of the
*                                  symmetric matrix is to be referenced.
*
*              UPLO = 'L' or 'l'   Only the lower triangular part of the
*                                  symmetric matrix is to be referenced.
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry,  M  specifies the number of rows of the matrix  C.
*           M  must be at least zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the number of columns of the matrix C.
*           N  must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, ka ), where ka is
*           m  when  SIDE = 'L' or 'l'  and is  n otherwise.
*           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of
*           the array  A  must contain the  symmetric matrix,  such that
*           when  UPLO = 'U' or 'u', the leading m by m upper triangular
*           part of the array  A  must contain the upper triangular part
*           of the  symmetric matrix and the  strictly  lower triangular
*           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
*           the leading  m by m  lower triangular part  of the  array  A
*           must  contain  the  lower triangular part  of the  symmetric
*           matrix and the  strictly upper triangular part of  A  is not
*           referenced.
*           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of
*           the array  A  must contain the  symmetric matrix,  such that
*           when  UPLO = 'U' or 'u', the leading n by n upper triangular
*           part of the array  A  must contain the upper triangular part
*           of the  symmetric matrix and the  strictly  lower triangular
*           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
*           the leading  n by n  lower triangular part  of the  array  A
*           must  contain  the  lower triangular part  of the  symmetric
*           matrix and the  strictly upper triangular part of  A  is not
*           referenced.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
*           LDA must be at least  max( 1, m ), otherwise  LDA must be at
*           least  max( 1, n ).
*           Unchanged on exit.
*
*  B      - REAL             array of DIMENSION ( LDB, n ).
*           Before entry, the leading  m by n part of the array  B  must
*           contain the matrix B.
*           Unchanged on exit.
*
*  LDB    - INTEGER.
*           On entry, LDB specifies the first dimension of B as declared
*           in  the  calling  (sub)  program.   LDB  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*  BETA   - REAL            .
*           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
*           supplied as zero then C need not be set on input.
*           Unchanged on exit.
*
*  C      - REAL             array of DIMENSION ( LDC, n ).
*           Before entry, the leading  m by n  part of the array  C must
*           contain the matrix  C,  except when  beta  is zero, in which
*           case C need not be set on entry.
*           On exit, the array  C  is overwritten by the  m by n updated
*           matrix.
*
*  LDC    - INTEGER.
*           On entry, LDC specifies the first dimension of C as declared
*           in  the  calling  (sub)  program.   LDC  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*
*  Level 3 Blas routine.
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
*     .. External Functions ..
*  =====================================================================


8.6.0.2.20. (ssymv uplo n alpha a lda x incx beta y incy )
(packages/blas/blas-s.lsh)


*  =====================================================================
*  Purpose
*  =======
*
*  SSYMV  performs the matrix-vector  operation
*
*     y := alpha*A*x + beta*y,
*
*  where alpha and beta are scalars, x and y are n element vectors and
*  A is an n by n symmetric matrix.
*
*  Parameters
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the upper or lower
*           triangular part of the array A is to be referenced as
*           follows:
*
*              UPLO = 'U' or 'u'   Only the upper triangular part of A
*                                  is to be referenced.
*
*              UPLO = 'L' or 'l'   Only the lower triangular part of A
*                                  is to be referenced.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the order of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, n ).
*           Before entry with  UPLO = 'U' or 'u', the leading n by n
*           upper triangular part of the array A must contain the upper
*           triangular part of the symmetric matrix and the strictly
*           lower triangular part of A is not referenced.
*           Before entry with UPLO = 'L' or 'l', the leading n by n
*           lower triangular part of the array A must contain the lower
*           triangular part of the symmetric matrix and the strictly
*           upper triangular part of A is not referenced.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. LDA must be at least
*           max( 1, n ).
*           Unchanged on exit.
*
*  X      - REAL             array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the n
*           element vector x.
*           Unchanged on exit.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*  BETA   - REAL            .
*           On entry, BETA specifies the scalar beta. When BETA is
*           supplied as zero then Y need not be set on input.
*           Unchanged on exit.
*
*  Y      - REAL             array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCY ) ).
*           Before entry, the incremented array Y must contain the n
*           element vector y. On exit, Y is overwritten by the updated
*           vector y.
*
*  INCY   - INTEGER.
*           On entry, INCY specifies the increment for the elements of
*           Y. INCY must not be zero.
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
*  =====================================================================


8.6.0.2.21. (ssyr2k uplo trans n k alpha a lda b ldb beta c ldc )
(packages/blas/blas-s.lsh)


*  =====================================================================
*  Purpose
*  =======
*
*  SSYR2K  performs one of the symmetric rank 2k operations
*
*     C := alpha*A*B' + alpha*B*A' + beta*C,
*
*  or
*
*     C := alpha*A'*B + alpha*B'*A + beta*C,
*
*  where  alpha and beta  are scalars, C is an  n by n  symmetric matrix
*  and  A and B  are  n by k  matrices  in the  first  case  and  k by n
*  matrices in the second case.
*
*  Parameters
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On  entry,   UPLO  specifies  whether  the  upper  or  lower
*           triangular  part  of the  array  C  is to be  referenced  as
*           follows:
*
*              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
*                                  is to be referenced.
*
*              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
*                                  is to be referenced.
*
*           Unchanged on exit.
*
*  TRANS  - CHARACTER*1.
*           On entry,  TRANS  specifies the operation to be performed as
*           follows:
*
*              TRANS = 'N' or 'n'   C := alpha*A*B' + alpha*B*A' +
*                                        beta*C.
*
*              TRANS = 'T' or 't'   C := alpha*A'*B + alpha*B'*A +
*                                        beta*C.
*
*              TRANS = 'C' or 'c'   C := alpha*A'*B + alpha*B'*A +
*                                        beta*C.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry,  N specifies the order of the matrix C.  N must be
*           at least zero.
*           Unchanged on exit.
*
*  K      - INTEGER.
*           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
*           of  columns  of the  matrices  A and B,  and on  entry  with
*           TRANS = 'T' or 't' or 'C' or 'c',  K  specifies  the  number
*           of rows of the matrices  A and B.  K must be at least  zero.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, ka ), where ka is
*           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
*           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
*           part of the array  A  must contain the matrix  A,  otherwise
*           the leading  k by n  part of the array  A  must contain  the
*           matrix A.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
*           then  LDA must be at least  max( 1, n ), otherwise  LDA must
*           be at least  max( 1, k ).
*           Unchanged on exit.
*
*  B      - REAL             array of DIMENSION ( LDB, kb ), where kb is
*           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
*           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
*           part of the array  B  must contain the matrix  B,  otherwise
*           the leading  k by n  part of the array  B  must contain  the
*           matrix B.
*           Unchanged on exit.
*
*  LDB    - INTEGER.
*           On entry, LDB specifies the first dimension of B as declared
*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
*           then  LDB must be at least  max( 1, n ), otherwise  LDB must
*           be at least  max( 1, k ).
*           Unchanged on exit.
*
*  BETA   - REAL            .
*           On entry, BETA specifies the scalar beta.
*           Unchanged on exit.
*
*  C      - REAL             array of DIMENSION ( LDC, n ).
*           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
*           upper triangular part of the array C must contain the upper
*           triangular part  of the  symmetric matrix  and the strictly
*           lower triangular part of C is not referenced.  On exit, the
*           upper triangular part of the array  C is overwritten by the
*           upper triangular part of the updated matrix.
*           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
*           lower triangular part of the array C must contain the lower
*           triangular part  of the  symmetric matrix  and the strictly
*           upper triangular part of C is not referenced.  On exit, the
*           lower triangular part of the array  C is overwritten by the
*           lower triangular part of the updated matrix.
*
*  LDC    - INTEGER.
*           On entry, LDC specifies the first dimension of C as declared
*           in  the  calling  (sub)  program.   LDC  must  be  at  least
*           max( 1, n ).
*           Unchanged on exit.
*
*
*  Level 3 Blas routine.
*
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
*     .. External Functions ..
*  =====================================================================


8.6.0.2.22. (ssyr2 uplo n alpha x incx y incy a lda )
(packages/blas/blas-s.lsh)


*  =====================================================================
*  Purpose
*  =======
*
*  SSYR2  performs the symmetric rank 2 operation
*
*     A := alpha*x*y' + alpha*y*x' + A,
*
*  where alpha is a scalar, x and y are n element vectors and A is an n
*  by n symmetric matrix.
*
*  Parameters
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the upper or lower
*           triangular part of the array A is to be referenced as
*           follows:
*
*              UPLO = 'U' or 'u'   Only the upper triangular part of A
*                                  is to be referenced.
*
*              UPLO = 'L' or 'l'   Only the lower triangular part of A
*                                  is to be referenced.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the order of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  X      - REAL             array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the n
*           element vector x.
*           Unchanged on exit.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*  Y      - REAL             array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCY ) ).
*           Before entry, the incremented array Y must contain the n
*           element vector y.
*           Unchanged on exit.
*
*  INCY   - INTEGER.
*           On entry, INCY specifies the increment for the elements of
*           Y. INCY must not be zero.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, n ).
*           Before entry with  UPLO = 'U' or 'u', the leading n by n
*           upper triangular part of the array A must contain the upper
*           triangular part of the symmetric matrix and the strictly
*           lower triangular part of A is not referenced. On exit, the
*           upper triangular part of the array A is overwritten by the
*           upper triangular part of the updated matrix.
*           Before entry with UPLO = 'L' or 'l', the leading n by n
*           lower triangular part of the array A must contain the lower
*           triangular part of the symmetric matrix and the strictly
*           upper triangular part of A is not referenced. On exit, the
*           lower triangular part of the array A is overwritten by the
*           lower triangular part of the updated matrix.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. LDA must be at least
*           max( 1, n ).
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
*  =====================================================================


8.6.0.2.23. (ssyrk uplo trans n k alpha a lda beta c ldc )
(packages/blas/blas-s.lsh)


*  =====================================================================
*  Purpose
*  =======
*
*  SSYRK  performs one of the symmetric rank k operations
*
*     C := alpha*A*A' + beta*C,
*
*  or
*
*     C := alpha*A'*A + beta*C,
*
*  where  alpha and beta  are scalars, C is an  n by n  symmetric matrix
*  and  A  is an  n by k  matrix in the first case and a  k by n  matrix
*  in the second case.
*
*  Parameters
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On  entry,   UPLO  specifies  whether  the  upper  or  lower
*           triangular  part  of the  array  C  is to be  referenced  as
*           follows:
*
*              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
*                                  is to be referenced.
*
*              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
*                                  is to be referenced.
*
*           Unchanged on exit.
*
*  TRANS  - CHARACTER*1.
*           On entry,  TRANS  specifies the operation to be performed as
*           follows:
*
*              TRANS = 'N' or 'n'   C := alpha*A*A' + beta*C.
*
*              TRANS = 'T' or 't'   C := alpha*A'*A + beta*C.
*
*              TRANS = 'C' or 'c'   C := alpha*A'*A + beta*C.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry,  N specifies the order of the matrix C.  N must be
*           at least zero.
*           Unchanged on exit.
*
*  K      - INTEGER.
*           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
*           of  columns   of  the   matrix   A,   and  on   entry   with
*           TRANS = 'T' or 't' or 'C' or 'c',  K  specifies  the  number
*           of rows of the matrix  A.  K must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, ka ), where ka is
*           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
*           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
*           part of the array  A  must contain the matrix  A,  otherwise
*           the leading  k by n  part of the array  A  must contain  the
*           matrix A.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
*           then  LDA must be at least  max( 1, n ), otherwise  LDA must
*           be at least  max( 1, k ).
*           Unchanged on exit.
*
*  BETA   - REAL            .
*           On entry, BETA specifies the scalar beta.
*           Unchanged on exit.
*
*  C      - REAL             array of DIMENSION ( LDC, n ).
*           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
*           upper triangular part of the array C must contain the upper
*           triangular part  of the  symmetric matrix  and the strictly
*           lower triangular part of C is not referenced.  On exit, the
*           upper triangular part of the array  C is overwritten by the
*           upper triangular part of the updated matrix.
*           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
*           lower triangular part of the array C must contain the lower
*           triangular part  of the  symmetric matrix  and the strictly
*           upper triangular part of C is not referenced.  On exit, the
*           lower triangular part of the array  C is overwritten by the
*           lower triangular part of the updated matrix.
*
*  LDC    - INTEGER.
*           On entry, LDC specifies the first dimension of C as declared
*           in  the  calling  (sub)  program.   LDC  must  be  at  least
*           max( 1, n ).
*           Unchanged on exit.
*
*
*  Level 3 Blas routine.
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
*     .. External Functions ..
*  =====================================================================


8.6.0.2.24. (ssyr uplo n alpha x incx a lda )
(packages/blas/blas-s.lsh)


*  =====================================================================
*  Purpose
*  =======
*
*  SSYR   performs the symmetric rank 1 operation
*
*     A := alpha*x*x' + A,
*
*  where alpha is a real scalar, x is an n element vector and A is an
*  n by n symmetric matrix.
*
*  Parameters
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the upper or lower
*           triangular part of the array A is to be referenced as
*           follows:
*
*              UPLO = 'U' or 'u'   Only the upper triangular part of A
*                                  is to be referenced.
*
*              UPLO = 'L' or 'l'   Only the lower triangular part of A
*                                  is to be referenced.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the order of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  X      - REAL             array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the n
*           element vector x.
*           Unchanged on exit.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, n ).
*           Before entry with  UPLO = 'U' or 'u', the leading n by n
*           upper triangular part of the array A must contain the upper
*           triangular part of the symmetric matrix and the strictly
*           lower triangular part of A is not referenced. On exit, the
*           upper triangular part of the array A is overwritten by the
*           upper triangular part of the updated matrix.
*           Before entry with UPLO = 'L' or 'l', the leading n by n
*           lower triangular part of the array A must contain the lower
*           triangular part of the symmetric matrix and the strictly
*           upper triangular part of A is not referenced. On exit, the
*           lower triangular part of the array A is overwritten by the
*           lower triangular part of the updated matrix.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. LDA must be at least
*           max( 1, n ).
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
*  =====================================================================


8.6.0.2.25. (stbmv uplo trans diag n k a lda x incx )
(packages/blas/blas-s.lsh)


*  =====================================================================
*  Purpose
*  =======
*
*  STBMV  performs one of the matrix-vector operations
*
*     x := A*x,   or   x := A'*x,
*
*  where x is an n element vector and  A is an n by n unit, or non-unit,
*  upper or lower triangular band matrix, with ( k + 1 ) diagonals.
*
*  Parameters
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the matrix is an upper or
*           lower triangular matrix as follows:
*
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
*
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
*
*           Unchanged on exit.
*
*  TRANS  - CHARACTER*1.
*           On entry, TRANS specifies the operation to be performed as
*           follows:
*
*              TRANS = 'N' or 'n'   x := A*x.
*
*              TRANS = 'T' or 't'   x := A'*x.
*
*              TRANS = 'C' or 'c'   x := A'*x.
*
*           Unchanged on exit.
*
*  DIAG   - CHARACTER*1.
*           On entry, DIAG specifies whether or not A is unit
*           triangular as follows:
*
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
*
*              DIAG = 'N' or 'n'   A is not assumed to be unit
*                                  triangular.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the order of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  K      - INTEGER.
*           On entry with UPLO = 'U' or 'u', K specifies the number of
*           super-diagonals of the matrix A.
*           On entry with UPLO = 'L' or 'l', K specifies the number of
*           sub-diagonals of the matrix A.
*           K must satisfy  0 .le. K.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, n ).
*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
*           by n part of the array A must contain the upper triangular
*           band part of the matrix of coefficients, supplied column by
*           column, with the leading diagonal of the matrix in row
*           ( k + 1 ) of the array, the first super-diagonal starting at
*           position 2 in row k, and so on. The top left k by k triangle
*           of the array A is not referenced.
*           The following program segment will transfer an upper
*           triangular band matrix from conventional full matrix storage
*           to band storage:
*
*                 DO 20, J = 1, N
*                    M = K + 1 - J
*                    DO 10, I = MAX( 1, J - K ), J
*                       A( M + I, J ) = matrix( I, J )
*              10    CONTINUE
*              20 CONTINUE
*
*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
*           by n part of the array A must contain the lower triangular
*           band part of the matrix of coefficients, supplied column by
*           column, with the leading diagonal of the matrix in row 1 of
*           the array, the first sub-diagonal starting at position 1 in
*           row 2, and so on. The bottom right k by k triangle of the
*           array A is not referenced.
*           The following program segment will transfer a lower
*           triangular band matrix from conventional full matrix storage
*           to band storage:
*
*                 DO 20, J = 1, N
*                    M = 1 - J
*                    DO 10, I = J, MIN( N, J + K )
*                       A( M + I, J ) = matrix( I, J )
*              10    CONTINUE
*              20 CONTINUE
*
*           Note that when DIAG = 'U' or 'u' the elements of the array A
*           corresponding to the diagonal elements of the matrix are not
*           referenced, but are assumed to be unity.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. LDA must be at least
*           ( k + 1 ).
*           Unchanged on exit.
*
*  X      - REAL             array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the n
*           element vector x. On exit, X is overwritten with the
*           tranformed vector x.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
*  =====================================================================


8.6.0.2.26. (stbsv uplo trans diag n k a lda x incx )
(packages/blas/blas-s.lsh)


*  =====================================================================
*  Purpose
*  =======
*
*  STBSV  solves one of the systems of equations
*
*     A*x = b,   or   A'*x = b,
*
*  where b and x are n element vectors and A is an n by n unit, or
*  non-unit, upper or lower triangular band matrix, with ( k + 1 )
*  diagonals.
*
*  No test for singularity or near-singularity is included in this
*  routine. Such tests must be performed before calling this routine.
*
*  Parameters
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the matrix is an upper or
*           lower triangular matrix as follows:
*
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
*
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
*
*           Unchanged on exit.
*
*  TRANS  - CHARACTER*1.
*           On entry, TRANS specifies the equations to be solved as
*           follows:
*
*              TRANS = 'N' or 'n'   A*x = b.
*
*              TRANS = 'T' or 't'   A'*x = b.
*
*              TRANS = 'C' or 'c'   A'*x = b.
*
*           Unchanged on exit.
*
*  DIAG   - CHARACTER*1.
*           On entry, DIAG specifies whether or not A is unit
*           triangular as follows:
*
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
*
*              DIAG = 'N' or 'n'   A is not assumed to be unit
*                                  triangular.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the order of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  K      - INTEGER.
*           On entry with UPLO = 'U' or 'u', K specifies the number of
*           super-diagonals of the matrix A.
*           On entry with UPLO = 'L' or 'l', K specifies the number of
*           sub-diagonals of the matrix A.
*           K must satisfy  0 .le. K.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, n ).
*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
*           by n part of the array A must contain the upper triangular
*           band part of the matrix of coefficients, supplied column by
*           column, with the leading diagonal of the matrix in row
*           ( k + 1 ) of the array, the first super-diagonal starting at
*           position 2 in row k, and so on. The top left k by k triangle
*           of the array A is not referenced.
*           The following program segment will transfer an upper
*           triangular band matrix from conventional full matrix storage
*           to band storage:
*
*                 DO 20, J = 1, N
*                    M = K + 1 - J
*                    DO 10, I = MAX( 1, J - K ), J
*                       A( M + I, J ) = matrix( I, J )
*              10    CONTINUE
*              20 CONTINUE
*
*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
*           by n part of the array A must contain the lower triangular
*           band part of the matrix of coefficients, supplied column by
*           column, with the leading diagonal of the matrix in row 1 of
*           the array, the first sub-diagonal starting at position 1 in
*           row 2, and so on. The bottom right k by k triangle of the
*           array A is not referenced.
*           The following program segment will transfer a lower
*           triangular band matrix from conventional full matrix storage
*           to band storage:
*
*                 DO 20, J = 1, N
*                    M = 1 - J
*                    DO 10, I = J, MIN( N, J + K )
*                       A( M + I, J ) = matrix( I, J )
*              10    CONTINUE
*              20 CONTINUE
*
*           Note that when DIAG = 'U' or 'u' the elements of the array A
*           corresponding to the diagonal elements of the matrix are not
*           referenced, but are assumed to be unity.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. LDA must be at least
*           ( k + 1 ).
*           Unchanged on exit.
*
*  X      - REAL             array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the n
*           element right-hand side vector b. On exit, X is overwritten
*           with the solution vector x.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
*  =====================================================================


8.6.0.2.27. (stpmv uplo trans diag n ap x incx )
(packages/blas/blas-s.lsh)


*  =====================================================================
*  Purpose
*  =======
*
*  STPMV  performs one of the matrix-vector operations
*
*     x := A*x,   or   x := A'*x,
*
*  where x is an n element vector and  A is an n by n unit, or non-unit,
*  upper or lower triangular matrix, supplied in packed form.
*
*  Parameters
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the matrix is an upper or
*           lower triangular matrix as follows:
*
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
*
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
*
*           Unchanged on exit.
*
*  TRANS  - CHARACTER*1.
*           On entry, TRANS specifies the operation to be performed as
*           follows:
*
*              TRANS = 'N' or 'n'   x := A*x.
*
*              TRANS = 'T' or 't'   x := A'*x.
*
*              TRANS = 'C' or 'c'   x := A'*x.
*
*           Unchanged on exit.
*
*  DIAG   - CHARACTER*1.
*           On entry, DIAG specifies whether or not A is unit
*           triangular as follows:
*
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
*
*              DIAG = 'N' or 'n'   A is not assumed to be unit
*                                  triangular.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the order of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  AP     - REAL             array of DIMENSION at least
*           ( ( n*( n + 1 ) )/2 ).
*           Before entry with  UPLO = 'U' or 'u', the array AP must
*           contain the upper triangular matrix packed sequentially,
*           column by column, so that AP( 1 ) contains a( 1, 1 ),
*           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
*           respectively, and so on.
*           Before entry with UPLO = 'L' or 'l', the array AP must
*           contain the lower triangular matrix packed sequentially,
*           column by column, so that AP( 1 ) contains a( 1, 1 ),
*           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
*           respectively, and so on.
*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
*           A are not referenced, but are assumed to be unity.
*           Unchanged on exit.
*
*  X      - REAL             array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the n
*           element vector x. On exit, X is overwritten with the
*           tranformed vector x.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
*  =====================================================================


8.6.0.2.28. (stpsv uplo trans diag n ap x incx )
(packages/blas/blas-s.lsh)


*  =====================================================================
*  Purpose
*  =======
*
*  STPSV  solves one of the systems of equations
*
*     A*x = b,   or   A'*x = b,
*
*  where b and x are n element vectors and A is an n by n unit, or
*  non-unit, upper or lower triangular matrix, supplied in packed form.
*
*  No test for singularity or near-singularity is included in this
*  routine. Such tests must be performed before calling this routine.
*
*  Parameters
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the matrix is an upper or
*           lower triangular matrix as follows:
*
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
*
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
*
*           Unchanged on exit.
*
*  TRANS  - CHARACTER*1.
*           On entry, TRANS specifies the equations to be solved as
*           follows:
*
*              TRANS = 'N' or 'n'   A*x = b.
*
*              TRANS = 'T' or 't'   A'*x = b.
*
*              TRANS = 'C' or 'c'   A'*x = b.
*
*           Unchanged on exit.
*
*  DIAG   - CHARACTER*1.
*           On entry, DIAG specifies whether or not A is unit
*           triangular as follows:
*
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
*
*              DIAG = 'N' or 'n'   A is not assumed to be unit
*                                  triangular.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the order of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  AP     - REAL             array of DIMENSION at least
*           ( ( n*( n + 1 ) )/2 ).
*           Before entry with  UPLO = 'U' or 'u', the array AP must
*           contain the upper triangular matrix packed sequentially,
*           column by column, so that AP( 1 ) contains a( 1, 1 ),
*           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
*           respectively, and so on.
*           Before entry with UPLO = 'L' or 'l', the array AP must
*           contain the lower triangular matrix packed sequentially,
*           column by column, so that AP( 1 ) contains a( 1, 1 ),
*           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
*           respectively, and so on.
*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
*           A are not referenced, but are assumed to be unity.
*           Unchanged on exit.
*
*  X      - REAL             array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the n
*           element right-hand side vector b. On exit, X is overwritten
*           with the solution vector x.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
*  =====================================================================


8.6.0.2.29. (strmm side uplo transa diag m n alpha a lda b ldb )
(packages/blas/blas-s.lsh)


*  =====================================================================
*  Purpose
*  =======
*
*  STRMM  performs one of the matrix-matrix operations
*
*     B := alpha*op( A )*B,   or   B := alpha*B*op( A ),
*
*  where  alpha  is a scalar,  B  is an m by n matrix,  A  is a unit, or
*  non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
*
*     op( A ) = A   or   op( A ) = A'.
*
*  Parameters
*  ==========
*
*  SIDE   - CHARACTER*1.
*           On entry,  SIDE specifies whether  op( A ) multiplies B from
*           the left or right as follows:
*
*              SIDE = 'L' or 'l'   B := alpha*op( A )*B.
*
*              SIDE = 'R' or 'r'   B := alpha*B*op( A ).
*
*           Unchanged on exit.
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the matrix A is an upper or
*           lower triangular matrix as follows:
*
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
*
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
*
*           Unchanged on exit.
*
*  TRANSA - CHARACTER*1.
*           On entry, TRANSA specifies the form of op( A ) to be used in
*           the matrix multiplication as follows:
*
*              TRANSA = 'N' or 'n'   op( A ) = A.
*
*              TRANSA = 'T' or 't'   op( A ) = A'.
*
*              TRANSA = 'C' or 'c'   op( A ) = A'.
*
*           Unchanged on exit.
*
*  DIAG   - CHARACTER*1.
*           On entry, DIAG specifies whether or not A is unit triangular
*           as follows:
*
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
*
*              DIAG = 'N' or 'n'   A is not assumed to be unit
*                                  triangular.
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry, M specifies the number of rows of B. M must be at
*           least zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the number of columns of B.  N must be
*           at least zero.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
*           zero then  A is not referenced and  B need not be set before
*           entry.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, k ), where k is m
*           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'.
*           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
*           upper triangular part of the array  A must contain the upper
*           triangular matrix  and the strictly lower triangular part of
*           A is not referenced.
*           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
*           lower triangular part of the array  A must contain the lower
*           triangular matrix  and the strictly upper triangular part of
*           A is not referenced.
*           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
*           A  are not referenced either,  but are assumed to be  unity.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
*           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
*           then LDA must be at least max( 1, n ).
*           Unchanged on exit.
*
*  B      - REAL             array of DIMENSION ( LDB, n ).
*           Before entry,  the leading  m by n part of the array  B must
*           contain the matrix  B,  and  on exit  is overwritten  by the
*           transformed matrix.
*
*  LDB    - INTEGER.
*           On entry, LDB specifies the first dimension of B as declared
*           in  the  calling  (sub)  program.   LDB  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*
*  Level 3 Blas routine.
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
*     .. External Functions ..
*  =====================================================================


8.6.0.2.30. (strmv uplo trans diag n a lda x incx )
(packages/blas/blas-s.lsh)


*  =====================================================================
*  Purpose
*  =======
*
*  STRMV  performs one of the matrix-vector operations
*
*     x := A*x,   or   x := A'*x,
*
*  where x is an n element vector and  A is an n by n unit, or non-unit,
*  upper or lower triangular matrix.
*
*  Parameters
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the matrix is an upper or
*           lower triangular matrix as follows:
*
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
*
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
*
*           Unchanged on exit.
*
*  TRANS  - CHARACTER*1.
*           On entry, TRANS specifies the operation to be performed as
*           follows:
*
*              TRANS = 'N' or 'n'   x := A*x.
*
*              TRANS = 'T' or 't'   x := A'*x.
*
*              TRANS = 'C' or 'c'   x := A'*x.
*
*           Unchanged on exit.
*
*  DIAG   - CHARACTER*1.
*           On entry, DIAG specifies whether or not A is unit
*           triangular as follows:
*
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
*
*              DIAG = 'N' or 'n'   A is not assumed to be unit
*                                  triangular.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the order of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, n ).
*           Before entry with  UPLO = 'U' or 'u', the leading n by n
*           upper triangular part of the array A must contain the upper
*           triangular matrix and the strictly lower triangular part of
*           A is not referenced.
*           Before entry with UPLO = 'L' or 'l', the leading n by n
*           lower triangular part of the array A must contain the lower
*           triangular matrix and the strictly upper triangular part of
*           A is not referenced.
*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
*           A are not referenced either, but are assumed to be unity.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. LDA must be at least
*           max( 1, n ).
*           Unchanged on exit.
*
*  X      - REAL             array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the n
*           element vector x. On exit, X is overwritten with the
*           tranformed vector x.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
*  =====================================================================


8.6.0.2.31. (strsm side uplo transa diag m n alpha a lda b ldb )
(packages/blas/blas-s.lsh)


*  =====================================================================
*  Purpose
*  =======
*
*  STRSM  solves one of the matrix equations
*
*     op( A )*X = alpha*B,   or   X*op( A ) = alpha*B,
*
*  where alpha is a scalar, X and B are m by n matrices, A is a unit, or
*  non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
*
*     op( A ) = A   or   op( A ) = A'.
*
*  The matrix X is overwritten on B.
*
*  Parameters
*  ==========
*
*  SIDE   - CHARACTER*1.
*           On entry, SIDE specifies whether op( A ) appears on the left
*           or right of X as follows:
*
*              SIDE = 'L' or 'l'   op( A )*X = alpha*B.
*
*              SIDE = 'R' or 'r'   X*op( A ) = alpha*B.
*
*           Unchanged on exit.
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the matrix A is an upper or
*           lower triangular matrix as follows:
*
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
*
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
*
*           Unchanged on exit.
*
*  TRANSA - CHARACTER*1.
*           On entry, TRANSA specifies the form of op( A ) to be used in
*           the matrix multiplication as follows:
*
*              TRANSA = 'N' or 'n'   op( A ) = A.
*
*              TRANSA = 'T' or 't'   op( A ) = A'.
*
*              TRANSA = 'C' or 'c'   op( A ) = A'.
*
*           Unchanged on exit.
*
*  DIAG   - CHARACTER*1.
*           On entry, DIAG specifies whether or not A is unit triangular
*           as follows:
*
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
*
*              DIAG = 'N' or 'n'   A is not assumed to be unit
*                                  triangular.
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry, M specifies the number of rows of B. M must be at
*           least zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the number of columns of B.  N must be
*           at least zero.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
*           zero then  A is not referenced and  B need not be set before
*           entry.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, k ), where k is m
*           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'.
*           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
*           upper triangular part of the array  A must contain the upper
*           triangular matrix  and the strictly lower triangular part of
*           A is not referenced.
*           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
*           lower triangular part of the array  A must contain the lower
*           triangular matrix  and the strictly upper triangular part of
*           A is not referenced.
*           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
*           A  are not referenced either,  but are assumed to be  unity.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
*           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
*           then LDA must be at least max( 1, n ).
*           Unchanged on exit.
*
*  B      - REAL             array of DIMENSION ( LDB, n ).
*           Before entry,  the leading  m by n part of the array  B must
*           contain  the  right-hand  side  matrix  B,  and  on exit  is
*           overwritten by the solution matrix  X.
*
*  LDB    - INTEGER.
*           On entry, LDB specifies the first dimension of B as declared
*           in  the  calling  (sub)  program.   LDB  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*
*  Level 3 Blas routine.
*
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
*     .. External Functions ..
*  =====================================================================


8.6.0.2.32. (strsv uplo trans diag n a lda x incx )
(packages/blas/blas-s.lsh)


*  =====================================================================
*  Purpose
*  =======
*
*  STRSV  solves one of the systems of equations
*
*     A*x = b,   or   A'*x = b,
*
*  where b and x are n element vectors and A is an n by n unit, or
*  non-unit, upper or lower triangular matrix.
*
*  No test for singularity or near-singularity is included in this
*  routine. Such tests must be performed before calling this routine.
*
*  Parameters
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the matrix is an upper or
*           lower triangular matrix as follows:
*
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
*
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
*
*           Unchanged on exit.
*
*  TRANS  - CHARACTER*1.
*           On entry, TRANS specifies the equations to be solved as
*           follows:
*
*              TRANS = 'N' or 'n'   A*x = b.
*
*              TRANS = 'T' or 't'   A'*x = b.
*
*              TRANS = 'C' or 'c'   A'*x = b.
*
*           Unchanged on exit.
*
*  DIAG   - CHARACTER*1.
*           On entry, DIAG specifies whether or not A is unit
*           triangular as follows:
*
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
*
*              DIAG = 'N' or 'n'   A is not assumed to be unit
*                                  triangular.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the order of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, n ).
*           Before entry with  UPLO = 'U' or 'u', the leading n by n
*           upper triangular part of the array A must contain the upper
*           triangular matrix and the strictly lower triangular part of
*           A is not referenced.
*           Before entry with UPLO = 'L' or 'l', the leading n by n
*           lower triangular part of the array A must contain the lower
*           triangular matrix and the strictly upper triangular part of
*           A is not referenced.
*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
*           A are not referenced either, but are assumed to be unity.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. LDA must be at least
*           max( 1, n ).
*           Unchanged on exit.
*
*  X      - REAL             array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the n
*           element right-hand side vector b. On exit, X is overwritten
*           with the solution vector x.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
*  =====================================================================